1,096 research outputs found

    Energy Gradients Structure Microbial Communities Across Sediment Horizons in Deep Marine Sediments of the South China Sea

    Get PDF
    The deep marine subsurface is a heterogeneous environment in which the assembly of microbial communities is thought to be controlled by a combination of organic matter deposition, electron acceptor availability, and sedimentology. However, the relative importance of these factors in structuring microbial communities in marine sediments remains unclear. The South China Sea (SCS) experiences significant variability in sedimentation across the basin and features discrete changes in sedimentology as a result of episodic deposition of turbidites and volcanic ashes within lithogenic clays and siliceous or calcareous ooze deposits throughout the basin\u27s history. Deep subsurface microbial communities were recently sampled by the International Ocean Discovery Program (IODP) at three locations in the SCS with sedimentation rates of 5, 12, and 20 cm per thousand years. Here, we used Illumina sequencing of the 16S ribosomal RNA gene to characterize deep subsurface microbial communities from distinct sediment types at these sites. Communities across all sites were dominated by several poorly characterized taxa implicated in organic matter degradation, including Atribacteria, Dehalococcoidia, and Aerophobetes. Sulfate-reducing bacteria comprised only 4% of the community across sulfate-bearing sediments from multiple cores and did not change in abundance in sediments from the methanogenic zone at the site with the lowest sedimentation rate. Microbial communities were significantly structured by sediment age and the availability of sulfate as an electron acceptor in pore waters. However, microbial communities demonstrated no partitioning based on the sediment type they inhabited. These results indicate that microbial communities in the SCS are structured by the availability of electron donors and acceptors rather than sedimentological characteristics

    Timing is everything: early degradation of abscission layer is associated with increased seed shattering in U.S. weedy rice

    Get PDF
    Background Seed shattering, or shedding, is an important fitness trait for wild and weedy grasses. U.S. weedy rice (Oryza sativa) is a highly shattering weed, thought to have evolved from non-shattering cultivated ancestors. All U.S. weedy rice individuals examined to date contain a mutation in the sh4 locus associated with loss of shattering during rice domestication. Weedy individuals also share the shattering trait with wild rice, but not the ancestral shattering mutation at sh4; thus, how weedy rice reacquired the shattering phenotype is unknown. To establish the morphological basis of the parallel evolution of seed shattering in weedy rice and wild, we examined the abscission layer at the flower-pedicel junction in weedy individuals in comparison with wild and cultivated relatives. Results Consistent with previous work, shattering wild rice individuals possess clear, defined abscission layers at flowering, whereas non-shattering cultivated rice individuals do not. Shattering weedy rice from two separately evolved populations in the U.S. (SH and BHA) show patterns of abscission layer formation and degradation distinct from wild rice. Prior to flowering, the abscission layer has formed in all weedy individuals and by flowering it is already degrading. In contrast, wild O. rufipogon abscission layers have been shown not to degrade until after flowering has occurred. Conclusions Seed shattering in weedy rice involves the formation and degradation of an abscission layer in the flower-pedicel junction, as in wild Oryza, but is a developmentally different process from shattering in wild rice. Weedy rice abscission layers appear to break down earlier than wild abscission layers. The timing of weedy abscission layer degradation suggests that unidentified regulatory genes may play a critical role in the reacquisition of shattering in weedy rice, and sheds light on the morphological basis of pa

    Resisting Gentrification: The Theoretical and Practice Contributions of Social Work

    Get PDF
    Summary Gentrification is changing the landscape of many cities worldwide, exacerbating economic and racial inequality. Despite its relevance to social work, the field has been conspicuously absent from scholarship related to gentrification. This paper introduces the dominant view of gentrification (a political economic lens), highlighting its contributions and vulnerabilities, then introduces four case studies that illuminate the distinct contributions of social work to broaden the ways in which gentrification is theorized and responded to within communities. Findings When gentrification is analyzed exclusively through a political economy lens, researchers, policy makers, and practitioners are likely to focus on changes in land and home values, reducing the adverse effects of gentrification to a loss of affordable housing. A singular focus on affordable housing risks paying insufficient attention to racial struggle, perpetuating damage-based views of poor people and neighborhoods, and obfuscating political, social, and cultural displacements. Social work practice—including social action group work, community organizing, community development, and participatory research and planning—offers a holistic approach to understanding, resisting, and responding to gentrification and advance equitable development in the city. Applications By exploring social work practice that amplifies residents’ and change makers’ efforts, advances existing community organizing, produces new insights, builds inter-neighborhood and interdisciplinary collaborations, and facilitates social action and policy change, this paper helps community practitioners to reimagine the role of social work research and practice in gentrifying neighborhoods

    Macroalgae Decrease Growth and Alter Microbial Community Structure of the Reef-Building Coral, Porites astreoides

    Get PDF
    With the continued and unprecedented decline of coral reefs worldwide, evaluating the factors that contribute to coral demise is of critical importance. As coral cover declines, macroalgae are becoming more common on tropical reefs. Interactions between these macroalgae and corals may alter the coral microbiome, which is thought to play an important role in colony health and survival. Together, such changes in benthic macroalgae and in the coral microbiome may result in a feedback mechanism that contributes to additional coral cover loss. To determine if macroalgae alter the coral microbiome, we conducted a field-based experiment in which the coral Porites astreoides was placed in competition with five species of macroalgae. Macroalgal contact increased variance in the coral-associated microbial community, and two algal species significantly altered microbial community composition. All macroalgae caused the disappearance of a Îł-proteobacterium previously hypothesized to be an important mutualist of P. astreoides. Macroalgal contact also triggered: 1) increases or 2) decreases in microbial taxa already present in corals, 3) establishment of new taxa to the coral microbiome, and 4) vectoring and growth of microbial taxa from the macroalgae to the coral. Furthermore, macroalgal competition decreased coral growth rates by an average of 36.8%. Overall, this study found that competition between corals and certain species of macroalgae leads to an altered coral microbiome, providing a potential mechanism by which macroalgae-coral interactions reduce coral health and lead to coral loss on impacted reefs

    Fluctuant Magnetism in Metal Oxide Nanocrystals Capped with Surfactants

    Get PDF
    We demonstrate experimentally that magnetism in ZnO, TiO2, CeO2, andSnO2 nanocrystals (NCs) has a fluctuant nature that varies with capping surfactant type and concentration. By developing a forced hydrolysis approach with additional postprocessing for the synthesis and surfactant capping of these NCs, we effectively avoid the influence of size, shape, and magnetic impurities on the magnetic behavior of NCs, thus revealing the systematic influence of the capping surfactants on the NC magnetism. The x-ray photoelectron spectroscopy results and theoretical calculations clearly show that the magnetism fluctuation with surfactant concentration can be attributed to the periodic variation of spins, which arises from the concentration-dependent electron transfer from surfactants to NCs. Our results not only explain the previously reported seemingly irregular magnetism induced by capping surfactants but also provide an effective approach to tune or optimize the NC magnetism

    17O NMR study of q=0 spin excitations in a nearly ideal S=1/2 1D Heisenberg antiferromagnet, Sr2CuO3, up to 800 K

    Full text link
    We used 17O NMR to probe the uniform (wavevector q=0) electron spin excitations up to 800 K in Sr2CuO3 and separate the q=0 from the q=\pm\pi/a staggered components. Our results support the logarithmic decrease of the uniform spin susceptibility below T ~ 0.015J, where J=2200 K. From measurement of the dynamical spin susceptibility for q=0 by the spin-lattice relaxation rate 1/T_{1}, we demonstrate that the q=0 mode of spin transport is ballistic at the T=0 limit, but has a diffusion-like contribution at finite temperatures even for T << J.Comment: Submitted to Phys. Rev. Lett. 4 pages, 4 figure

    Axial morphology along the Southern Chile Rise

    Get PDF
    Author Posting. © The Author(s), 2012. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Marine Geology 315-318 (2012): 58-63, doi:10.1016/j.margeo.2012.06.001.Morphology of four spreading segments on the southern Chile Rise is described based on multi-beam bathymetric data collected along the axial zones. The distribution of axial volcanoes, the character of rift valley scarps, and the average depths vary between Segment 1 in the south, terminating at the Chile Triple Junction, and Segment 4 in the north, which are separated by three intervening transform faults. Despite this general variability, there is a consistent pattern of clockwise rotation of the southern-most axial volcanic ridge within each of Segments 2, 3, and 4, relative to the overall trend of the rift valley. A combination of local ridge-transform intersection stresses and regional tectonics may influence spreading axis evolution in this sense.This work was supported by NOAA/OE grant NA08OAR4600757 and University of California Ship Funds

    Measuring Positive Childhood Experiences: Testing the structural and predictive validity of the Health Outcomes from Positive Experiences (HOPE) framework

    Get PDF
    OBJECTIVE: Positive childhood experiences (PCEs), that occur within secure and nurturing social environments, are fundamental to healthy physical, socio-emotional, and cognitive development. However, reliable measures of these experiences are not yet widely available. We used data from the Longitudinal Study of Australian Children (LSAC) to empirically represent and psychometrically evaluate three primary domains of PCEs defined within the Health Outcomes from Positive Experiences (HOPE) framework, specifically: (1) nurturing and supportive relationships; (2) safe and protective environments and; (3) constructive social engagement and connectedness. METHODS: LSAC is a nationally representative cohort that has followed young Australians from birth since 2004. LSAC data were used to represent the three primary HOPE-PCEs domains (0-11 years) across four interrelated PCEs constructs: (1) positive parenting, (2) trusting and supportive relationships, (3) supportive neighbourhood and home learning environments, and (4) social engagement and enjoyment. Confirmatory factor analysis was used to test the proposed four-factor structure. Predictive validity was examined through associations with mental health problems and academic difficulties at 14-15 years. RESULTS: The four-factor structure was supported by empirical data at each time point. Higher exposure to PCEs across each domain was associated with lower reporting of mental health problems (β=-0.20 to -2.05) and academic difficulties (β=-0.01 to -0.13) in adolescence. CONCLUSIONS: The four LSAC-based HOPE-PCEs have sufficient internal coherence and predictive validity to offer a potentially useful way of conceptualizing and measuring PCEs in future cohort studies and intervention trials aiming to enhance understanding of, and mitigate the negative impacts of, adverse childhood experiences

    Nuclear spin relaxation rates in two-leg spin ladders

    Full text link
    Using the transfer-matrix DMRG method, we study the nuclear spin relaxation rate 1/T_1 in the two-leg s=1/2 ladder as function of the inter-chain (J_{\perp}) and intra-chain (J_{|}) couplings. In particular, we separate the q_y=0 and \pi contributions and show that the later contribute significantly to the copper relaxation rate ^{63}(1/T_1) in the experimentally relevant coupling and temperature range. We compare our results to both theoretical predictions and experimental measures on ladder materials.Comment: Few modifications from the previous version 4 pages, 5 figures, accepted for publication in PR
    • …
    corecore